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BILLY J. JACKSON

Abstract. In this paper, we develop notions of Lyapunov stability for the nabla time scale exponential
function. We begin by reviewing some of the necessary prerequisite definitions and theorems for nabla
differential equations. We then proceed to discuss the stability of the ordinary dynamic equation (ODE)
that defines the nabla exponential function. We conclude with a state feedback result showing that the
arbitrary linear ODE can be stabilized by using the controllability Gramian.

1. Introduction

The theory of time scales originated in Stefan Hilger’s dissertation [12] that evolved into his seminal
paper on the subject [11]. Originally intended to unify continuous and discrete analysis, the theory has gone
well beyond this aspect into extension of familiar properties of dynamic equations on arbitrary domains.
Recently, time scales analysis has received a considerable amount of attention in the context of engineering
applications, particularly in systems theory and control (see [8, 9, 10]). These results on stability and control
have dealt almost solely with the delta (forward) derivative.

Here, we wish to establish analogous results for the nabla (backward) derivative. The utility of such
an analysis becomes evident when one considers that the time scales analysis could also have important
implications for numerical analysts, who often use backward differences rather than forward differences to
handle their computations.

With this in mind, we begin with a review of the appropriate time scale definitions and theorems in the
nabla setting. The interested reader is urged to examine the works of Bohner and Peterson in [1, 2].

2. Background

We first review several definitions and theorems about the nabla derivative.

Definition 2.1. Let T be a nonempty closed subset of the reals, called a time scale. For each T and
f : T→ R, the following are defined:

(i) The backward jump operator ρ : T→ T is given by

ρ(t) := sup{s ∈ T : s < t}.
If ρ(t) = t, then t is left dense: otherwise t is left scattered.

(ii) The backward graininess ν : T→ R is defined by

ν(t) = t− ρ(t).

(iii) The nabla derivative f∇(t) of f : T→ R is the quantity (provided it exists)

f∇(t) =
f(t)− f(ρ(t))

ν(t)
.

In this definition, if ν(t) = 0 (i.e. if t is left dense) then this quantity is interpreted in the limit sense
as ν → 0.

(iv) f : T → R is said to be left dense continuous (abbreviated ld-continuous) if f(t) exists for all
t ∈ T and f is continuous from the left at left dense points of T.

(v) For f(t) a ld-continuous function, suppose there exists a function F (t) with F∇(t) = f(t). Then the
nabla integral of f(t) is given by ∫

f(t)∇t = F (t) + c.
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Theorem 2.1. Assume f, g : T→ R are nabla differentiable at t ∈ Tκ. Then:

(i) The sum f + g : T→ R is nabla differentiable at t with

(f + g)∇(t) = f∇(t) + g∇(t).

(ii) The product fg : T→ R is nabla differentiable at t , and we get the product rules

(fg)∇(t) = f∇(t)g(t) + f(ρ(t))g∇(t) = f(t)g∇(t) + f∇(t)g(ρ(t)).

(iii) If g(t)g(ρ(t)) 6= 0, then f/g is nabla differentiable at t, and we get the quotient rule
(

f

g

)∇
(t) =

f∇(t)g(t)− f(t)g∇(t)
g(t)g(ρ(t))

.

(iv) If f and f∇(t) are continuous, then

(∫ t

a

f(t, s)∇s

)∇
= f(ρ(t), t) +

∫ t

a

f∇t(t, s)∇s.

Definition 2.2. The function p : T→ R is ν-regressive if

1− ν(t)p(t) 6= 0 for all t ∈ Tκ.

The ν-regressive group (Rν ,⊕ν ,ªν) is the set

Rν = {p : T→ R : p is ld-continuous and ν-regressive},
together with the operations

p⊕ν q = p + q − νpq

and

ªνp = − p

1− νp
.

p is positively ν-regressive if

1− νp > 0.

Definition 2.3. For p ∈ Rν , the unique solution to the equation

y∇(t) = p(t)y(t), y(t0) = 1,

is called the nabla time scale exponential function and is denoted by y(t) = êp(t, t0). The nabla exponential
function has closed form

êp(t, t0) = exp
(∫ t

t0

−Log(1− ν(τ)p(τ))
ν(τ)

∇τ

)
.

Theorem 2.2 (Properties of the Nabla Exponential). Let p, q ∈ Rν and s, t, r ∈ T. Then

(i) ê0(t, s) ≡ 1 and êp(t, t) ≡ 1;
(ii) êp(ρ(t), s) = (1− ν(t)p(t))êp(t, s);
(iii) 1

êp(t,s) = êªνp(t, s);
(iv) êp(t, s) = 1

êp(s,t) = êªνp(s, t);
(v) êp(t, r)êp(r, s) = êp(t, s);
(vi) êp(t, r)êq(t, r) = êp⊕νq(t, r);
(vii) êp(t,s)

êq(t,s) = êpªνq(t, s);

(viii)
(

1
êp(t,s)

)∇
= − p(t)

êp(ρ(t),s) ;
(ix) If p is positively ν-regressive, then êp(t, t0) > 0.
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3. Stability of the Nabla Exponential

A natural question is the following: For what z ∈ C does it follow that

lim
t→∞

êz(t, t0) = 0?

If we examine the closed form of the nabla exponential, then a sufficient collection of such z ∈ C would be
the set {

z ∈ C :

∣∣∣∣∣z −
1

ν(t)

∣∣∣∣∣ >
1

ν(t)

}
.

(For the corresponding result in the delta case, see [3, 4, 7].) We will call the set

Hν :=

{
z ∈ C :

∣∣∣∣∣z −
1

ν(t)

∣∣∣∣∣ =
1

ν(t)

}

the ν-Hilger circle due to its importance in determining exponential stability.
We would like a geometric interpretation and connection of the set of exponential stability akin to the

one known for the delta case (see [1]). To do this, we will need to define the ν-Hilger complex plane.

Definition 3.1 (ν-Hilger Complex Plane). For ν > 0 we define the ν-Hilger complex numbers, the ν-Hilger
real axis, the ν-Hilger alternating axis, and the ν-Hilger imaginary circle as

Cν :=

{
z ∈ C : z 6= 1

ν

}
,

Rν :=

{
z ∈ Cν : z ∈ R and z <

1
ν

}
,

Aν :=

{
z ∈ Cν : z ∈ R and z >

1
ν

}
,

Iν :=

{
z ∈ Cν :

∣∣∣∣∣z −
1
ν

∣∣∣∣∣ =
1
ν

}
= Hν ,

respectively. For h = 0, let C0 := C, R0 := R, I0 := iR, and A0 := ∅.
Definition 3.2 (The ν-Hilger Complex plane). Let ν > 0 and z ∈ Cν . We define the ν-Hilger real part of
z by

Reν(z) :=
1− |1− νz|

ν
and the ν-Hilger imaginary part of z by

Imν(z) := −Arg(1− zν)
ν

,

where Arg(z) denotes the principal argument of z (i.e., −π < Arg(z) ≤ π). For −π
ν ≤ ω < π

ν , we define the
ν-Hilger purely imaginary number ˆ̊ιω by

ˆ̊ιω =
1− e−iων

ν
.

Note that Reν(z) and Imν(z) satisfy

−∞ < Reν(z) <
1
ν

and − π

ν
≤ Imν(z) <

π

ν
,

respectively. In particular, Reν(z) ∈ Rν . Also, for z ∈ Cν , we have that ˆ̊ιImν(z) ∈ Hν . The ν-Hilger complex
plane can be seen in Figure 1.

Theorem 3.1. For z ∈ Cν we have
z = Reν(z)⊕ν

ˆ̊ιImν(z).
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Figure 1. The ν-Hilger Complex Plane. Points interior to the ν-Hilger circle Hν have
positive ν-Hilger real part, while points exterior to the circle have negative ν-Hilger real
part. Points on the circle therefore have zero ν-Hilger real part. The shading indicates that
points exterior to the largest ν-Hilger circle (i.e. the one corresponding to ν∗) lie in the
stability region.

Proof. Let z ∈ Cν . Then

Reν(z)⊕ν
ˆ̊ιImν(z) =

1− |1− zν|
ν

⊕ν
ˆ̊ι
(
−Arg(1− zν)

ν

)

=
1− |1− zν|

ν
⊕ν

1− exp(iArg(1− zν))
ν

=
1− |1− zν|

ν
+

1− exp(iArg(1− zν))
ν

− ν
1− |1− zν|

ν

1− exp(iArg(1− zν))
ν

=
1
ν

{
1− |1− zν| exp(iArg(1− zν))

}

=
1− (1− zν)

ν
= z.

¤

Notice that as we stated before, the stability region is cast in terms of Hν . Points in the stability region
that we have chosen always have negative ν-Hilger real part. (Note that we often abuse the notation and
say that points in the stability region lie in the ν-Hilger circle when actually they are exterior to the largest
ν-Hilger circle corresponding to νmin = ν∗.) We could extend our stability region by considering points for
which the ν-Hilger real part is negative on average as Pötsche, Siegmund, and Wirth do for the delta case
in [16], but for our purposes the Hilger circle will suffice for stability.

It is also worth noting that for points z = ˆ̊ιω on the ν-Hilger circle, we have∣∣∣∣∣êˆ̊ιω(t, t0)

∣∣∣∣∣ = 1.

Further, the ν-Hilger real axis is so named because for points c < 1
ν on this axis, we have êc(t, t0) > 0, while

for points on the ν-Hilger alternating axis, we have that the nabla exponential is real valued and changes
sign at every point. The nabla exponential is never zero for any regressive subscript. Finally, the positively
regressive constants for the nabla exponential are simply the negative real axis.

As ν → 0, we see that the ν-Hilger circle tends to the open left-half plane as we would expect since for
T = R (where ν ≡ 0), the time scale exponential function is the continuous exponential (i.e. êz(t, 0) = ezt).
As ν → 1, we see that the stability region tends to the exterior of a circle of unit radius centered at z = 1.
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This should also make sense because for T = Z, we have êz(t, 0) = (1 − z)−t. However, notice in general
that the ν-Hilger circle is dynamic, varying as ν varies over T. Thus, in some sense, exponential stability
becomes a “moving target”.

4. Gronwall’s Inequality For the Nabla Integral

We shall need Gronwall’s inequality for later results, so we state and prove it here. (Actually, the proofs
that follow mirror their delta counterparts given in [1], but we give them here for the sake of completeness.)

Theorem 4.1. Let y, f ∈ Cld and p ∈ R+
ν . Then

y∇(t) ≤ p(t)y(t) + f(t) for all t ∈ T
implies

y(t) ≤ y(t0)êp(t, t0) +
∫ t

t0

êp(t, ρ(τ))f(τ)∇τ for all t ∈ T.

Proof. We use the product rule and Theorem 2.2 (ii) to calculate

[yêªνp(·, t0)]∇ (t) = y∇(t)êªνp(ρ(t), t0) + y(t)(ªνp)(t)êªνp(t, t0)

= y∇(t)êªνp(ρ(t), t0) + y(t)
ªνp)(t)

1− ν(t)(ªνp)(t)
êªνp(ρ(t), t0)

=
[
y∇(t)− (ªν(ªνp))(t)y(t)

]
êªνp(ρ(t), t0)

=
[
y∇(t)− p(t)y(t)

]
êªνp(ρ(t), t0).

Since p ∈ R+
ν , ªνp ∈ R+

ν since the positively ν-regressive functions are a subgroup of the ν-regressive
functions. Thus, êªνp > 0 by Theorem 2.2 (ix). Now

y(t)êªνp(t, t0)− y(t0) =
∫ t

t0

[
y∇(τ)− p(τ)y(τ)

]
êªνp(ρ(τ), t0)∇τ

≤
∫ t0

t

f(τ)êªνp(ρ(τ), t0)∇τ

=
∫ t

t0

êp(t0, ρ(τ))f(τ)∇τ,

and hence the assertion follows by applying Theorem 2.2. ¤

Theorem 4.2 (Bernoulli’s Inequality.). Let α ∈ R with α ∈ R+
ν . Then

êα(t, s) ≥ 1 + α(t− s) for all t ≥ s.

Proof. Since α ∈ R+
ν , we have êα(t, s) > 0 for all t, s ∈ T. Suppose t, s ∈ T with t ≥ s. Let y(t) = α(t− s).

Then
αy(t) + α = α2(t− s) + α ≥ α = y∇(t).

Since y(s) = 0, we have by Theorem 4.1 (with p(t) = f(t) ≡ α)

y(t) ≤
∫ t

s

êα(t, ρ(τ))α∇τ = êα(t, s)− 1.

Hence, êα(t, s) ≥ 1 + y(t) = 1 + α(t− s) follows. ¤

Theorem 4.3 (Gronwall’s Inequality.). Let y, f ∈ Cld and p ∈ R+
ν , p ≥ 0. Then

y(t) ≤ f(t) +
∫ t

t0

y(τ)p(τ)∇τ for all t ∈ T

implies

y(t) ≤ f(t) +
∫ t

t0

êp(t, ρ(τ))f(τ)p(τ)∇τ for all t ∈ T.
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Proof. Define

z(t) =
∫ t

t0

y(τ)p(τ)∇τ.

Then z(t0) = 0 and

z∇(t) = y(t)p(t) ≤ [f(t) + z(t)] p(t) = p(t)z(t) + p(t)f(t).

By Theorem 4.1,

z(t) ≤
∫ t

t0

êp(t, ρ(τ))f(τ)p(τ)∇τ.

and hence the claim follows because of y(t) ≤ f(t) + z(t). ¤

Corollary 4.1. Let y ∈ Cld and p ∈ R+
ν with p ≥ 0. Then

y(t) ≤
∫ t

t0

y(τ)p(τ)∇τ for all t ∈ T

implies

y(t) ≤ 0 for all t ∈ T.

Proof. This is Theorem 4.3 with f(t) ≡ 0. ¤

Corollary 4.2. Let y ∈ Cld, p ∈ R+
ν , p ≥ 0, and α ∈ R. Then

y(t) ≤ α +
∫ t

t0

y(τ)p(τ)∇τ for all t ∈ T

implies

y(t) ≤ αêp(t, t0) for all t ∈ T.

Proof. In Theorem 4.3, let f(t) ≡ α. Then by Theorem 4.3,

y(t) ≤ α +
∫ t

t0

êp(t, ρ(τ))αp(τ)∇τ

= α

[
1 +

∫ t

t0

p(τ)êp(t, ρ(τ))∇τ

]

= α[1 + êp(t, t0)− êp(t, t)]
= αêp(t, t0).

Thus, the claim follows. ¤

Corollary 4.3. Let y ∈ Cld and α, β, γ ∈ R with γ > 0. Then

y(t) ≤ α + β(t− t0) + γ

∫ t

t0

y(τ)∇τ for all t ∈ T

implies

y(t) ≤
(

α +
β

γ

)
êγ(t, t0)− β

γ
for all t ∈ T.
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Proof. In Theorem 4.3, let f(t) = α + β(t − t0) and p(t) ≡ γ. Note that for w(τ) = êγ(t, τ) we have
w∇(τ) = −γêγ(t, ρ(τ)). By Theorem 4.3,

y(t) ≤ f(t) +
∫ t

t0

êγ(t, ρ(τ))γf(τ)∇τ

= f(t)w(t)−
∫ t

t0

w∇(τ)f(τ)∇τ

= f(t0)w(t0) +
∫ t

t0

w(ρ(τ))f∇(τ)∇τ

= αêγ(t, t0) +
∫ t

t0

êγ(t, ρ(τ))β∇τ

= αêγ(t, t0) +
β

γ

∫ t

t0

γêγ(t, ρ(τ))∇τ

= αêγ(t, t0) +
β

γ
(êγ(t, t0)− 1).

Hence, the claim follows. ¤

5. The Systems Case

We now wish to turn our attention to the systems case. As with the scalar case, we begin by reviewing
some of the pertinent definitions and results that we will need later.

Definition 5.1. Let A be an n × n-matrix-valued function on T. A is ld-continuous if every entry of A is
ld-continuous. The class of all ld-continuous matrices is denoted by

Cld = Cld(T) = Cld(T,Rm×n).

A is nabla differentiable on T if every entry of A is nabla differentiable on T, in which case

A∇(t) = (a∇ij(t))1≤i≤n,1≤j≤n.

We say A is ν-regressive if
I − ν(t)A(t) is invertible for all t ∈ Tκ,

and the class of all such ν-regressive and ld-continuous matrix functions is denoted by

Rν = Rν(T) = Rν(T,Rn×n).

The system
x∇(t) = A(t)x(t), x(t0) = x0,

is called ν-regressive if A is ν-regressive.

Theorem 5.1. Suppose A and B are nabla differentiable n× n-matrix-valued functions. Then
(i) (A + B)∇(t) = A∇(t) + B∇(t);
(ii) (αA)∇(t) = αA∇(t) if α is constant;
(iii) (AB)∇(t) = A∇(t)B(ρ(t)) + A(t)B∇(t) = A(ρ(t))B∇(t) + A∇(t)B(t);
(iv) (A−1)∇ = −(A(ρ(t)))−1A∇(t)A−1(t) = −A−1(t)A∇(t)(A(ρ(t)))−1 if A(t)A(ρ(t)) is invertible.
(v) (AB−1)∇(t) = (A∇(t) − A(t)B−1(t)B∇(t))(B(ρ(t)))−1 = (A∇(t) − A(ρ(t))B−1(ρ(t))B∇(t))B−1(t)

if B(t)B(ρ(t)) is invertible.

Definition 5.2. The ν-regressive group (Rν(T,Rn×n),⊕ν ,ªν) is the set

Rν(T,Rn×n) = {A ∈ Rn×n : A is regressive and ld-continuous}
together with the operation ⊕ν defined by

A⊕ν B := A + B − νAB,

and inverse operation ªν given by
ªνA = −A(I − νA)−1.
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We are interested in solutions to nabla dynamic equations. We shall denote the solution of

Y ∇(t) = A(t)Y (t), Y (t0) = I

as Y (t) = φ̂A(t, t0).

Theorem 5.2 (Variation of Parameters.). Let A ∈ Rν(T,Rn×n) and suppose that f : T → Rn is ld-
continuous. Let t0 ∈ T and y0 ∈ Rn. Then the initial value problem

y∇(t) = A(t)y(t) + f(t), y(t0) = y0,

has a unique solution y : T→ Rn given by

y(t) = φ̂A(t, t0)y0 +
∫ t

t0

φ̂A(t, ρ(τ))f(τ)∇τ.

6. Exponential Stability and Lyapunov Criteria

We seek conditions that guarantee that solutions of

x∇(t) = A(t)x(t), x(t0) = x0

tend to zero as t → ∞. That is, we wish to establish a notion of asymptotic stability for this equation.
For our purposes, uniform exponential stability will suffice, so we define this notion here. For the reader
interested in the analogous results for the delta case, see [3, 4].

Definition 6.1. The time varying ν-regressive linear nabla dynamic equation

x∇(t) = A(t)x(t), x(t0) = x0

is said to be uniformly exponentially stable if there exist constants γ, λ > 0 such that for any t0 and x(t0),
the corresponding solution satisfies

||x(t)|| ≤ ||x(t0)||γê−λ(t, t0), t ≥ t0.

We make the blanket assumption that T is unbounded above. We associate with the state equation the
scalar function

||x(t)||2 = xT (t)x(t)

that acts as the system’s associated energy function. We want conditions on our system that guarantee that
||x(t)||2 → 0 as t →∞. We begin by noting that the energy function has time nabla derivative

(||x(t)||2)∇t = (xT (t)x(t))∇t

= xT∇(t)x(t) + xT ρ

(t)x∇(t)

= xT (t)AT (t)x(t) + xT (t)(I − ν(t)AT (t))A(t)x(t)

= xT (t)[AT (t) + A(t)− ν(t)AT (t)A(t)]x(t).

Thus, if the quadratic form we obtain from the derivative is negative definite, then we will have ||x(t)||2 → 0
as t → ∞, as desired. From this discussion, we see that if we can establish the existence of a symmetric
matrix Q(t) ∈ C1

ld(T,Rn×n) such that

[xT (t)Q(t)x(t)]∇t = xT∇(t)Q(t)x(t) + xT ρ

(t)(Q∇(t)xρ(t) + Q(t)x∇(t))

= xT (t)[AT (t)Q(t) + (I − ν(t)AT (t))Q∇(t)(I − ν(t)A(t))

+(I − ν(t)AT (t))Q(t)A(t)]x(t)

is negative definite, then we get asymptotic decay. We shall need other versions of the derivative of the
quadratic functional given above, so we present them here. Note that

[xT (t)Q(t)x(t)]∇ = (xT (t)Q(t))∇xρ(t) + xT (t)Q(t)x∇(t)

= xT (t)[AT (t)Qρ(t)(I − ν(t)A(t)) + Q∇(t)(I − ν(t)A(t)) + Q(t)A(t)]x(t),
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and also

[xT (t)Q(t)x(t)]∇ = xT∇(t)Q(t)x(t) + xT ρ

(t)(Q∇(t)xρ(t) + Q(t)x∇(t))

=
1

ν(t)
(xT (t)− xT ρ

(t))Q(t)x(t) +
1

ν(t)
xT ρ

(t)(Q(t)−Qρ(t))xρ(t)

+
1

ν(t)
xT ρ

(t)Q(t)(x(t)− xρ(t))

= xT (t)
[
Q(t)− (I − ν(t)AT (t))Qρ(t)(I − ν(t)A(t))

ν(t)

]
x(t).

Theorem 6.1 (Lyapunov Stability Criterion I). The time varying regressive nabla linear dynamic system

x∇(t) = A(t)x(t), x(t0) = x0

is uniformly exponentially stable if there exists a symmetric matrix Q(t) ∈ C1
ld(T,Rn×n) such that for all

t ∈ T
(i) ηI ≤ Q(t) ≤ κI,
(ii) AT (t)Q(t) + (I − ν(t)AT (t))Q∇(t)(I − ν(t)A(t)) + (I − ν(t)AT (t))Q(t)A(t) ≤ −γI,

where η, κ, γ > 0.

Proof. For any initial condition t0 and x(t0) = x0 with corresponding solution x(t) of the state equation, we
see that for all t ≥ t0, (ii) gives

[xT (t)Q(t)x(t)]∇ ≤ −γ||x(t)||2.
Also, for all t ≥ t0, (i) implies

xT (t)Q(t)x(t) ≤ κ||x(t)||2.
Thus,

[xT (t)Q(t)x(t)]∇ ≤ −γ

κ
xT (t)Q(t)x(t)

for all t ≥ t0. Since −γ
κ ∈ R+

ν , we can employ Theorem 4.1 to obtain

xT (t)Q(t)x(t) ≤ xT (t0)Q(t0)x(t0)ê−γ/κ(t, t0), t ≥ t0. (6.1)

By (i), ηI ≤ Q(t) so that η||x(t)||2 ≤ xT (t)Q(t)x(t), and thus an application of (6.1) yields

||x(t)||2 ≤ 1
η
xT (t)Q(t)x(t) ≤ 1

η
xT (t0)Q(t0)x(t0)ê−γ/κ(t, t0), t ≥ t0.

Now, x(t0)Q(t0)x(t0) ≤ κ||x(t0)||2 implies

||x(t)||2 ≤ κ

η
||x(t0)||2ê−γ/κ(t, t0),

which yields

||x(t)|| ≤ ||x(t0)||
√

κ

η
ê−γ/κ(t, t0), t ≥ t0.

Since this is true for arbitrary t0 and x(t0), uniform exponential stability is established. ¤

If we use the other two representations of the derivative given above, then we see the proofs of the following
two theorems are the same as the same as the previous one.

Theorem 6.2 (Lyapunov Stability Criterion II). The time varying regressive nabla linear dynamic system

x∇(t) = A(t)x(t), x(t0) = x0

is uniformly exponentially stable if there exists a symmetric matrix Q(t) ∈ C1
ld(T,Rn×n) such that for all

t ∈ T
(i) ηI ≤ Q(t) ≤ κI,
(ii) AT (t)Qρ(t)(I − ν(t)A(t)) + Q∇(t)(I − ν(t)A(t)) + Q(t)A(t) ≤ −γI,

where η, κ, γ > 0.

B.J. Jackson, "Adaptive control in the nabla setting." Neural Parallel Sci. Comput. 16 (2008), 253-272.



10 JACKSON

Theorem 6.3 (Lyapunov Stability Criterion III). The time varying regressive nabla linear dynamic system

x∇(t) = A(t)x(t), x(t0) = x0

is uniformly exponentially stable if there exists a symmetric matrix Q(t) ∈ C1
ld(T,Rn×n) such that for all

t ∈ T
(i) ηI ≤ Q(t) ≤ κI,
(ii)

(
Q(t)− (I − ν(t)AT (t))Qρ(t)(I − ν(t)A(t))

)
/ν(t) ≤ −γI,

where η, κ, γ > 0.

7. Control and State Feedback

We desire an analogue of the feedback result obtained in [13] for the nabla dynamic equation. To do that,
we first need to discuss controllability. The reader can see [6, 13] for the control results concerning the delta
derivative, and [5, 14, 15, 17, 18] for the control and feedback theorems stated and proved for the special
cases T = R and T = Z.

Definition 7.1. The ν-regressive linear nabla dynamic state equation

x∇(t) = A(t)x(t) + B(t)u(t), x(t0) = x0,

y(t) = C(t)x(t) + D(t)u(t) (7.1)

is called controllable on [t0, tf ]T if given any initial state x0 there exists a ld-continuous input signal u(t)
such that the corresponding solution of the system satisfies x(tf ) = xf .

Theorem 7.1. The ν-regressive nabla linear state equation (7.1) is controllable on [t0, tf ]T if and only if
the n× n controllability Gramian matrix

ĜC(t0, tf ) =
∫ tf

t0

φ̂A(t0, ρ(s))B(s)BT (s)φ̂T
A(t0, ρ(s))∇s

is invertible.

Proof. Suppose ĜC(t0, tf ) is invertible. Then, given x0 and xf , we can choose the input signal u(t) as

u(t) = −BT (t)φ̂A(t0, ρ(t))Ĝ−1
C (t0, tf )(x0 − φ̂A(t0, tf )xf ), t ∈ (t0, tf ],

and extend u(t) continuously for all other values of t. The corresponding solution of the system at t = tf
can be written as

x(tf ) = φ̂A(tf , t0)x0 +
∫ tf

t0

φ̂A(tf , ρ(s))B(s)u(s)∇s

= φ̂A(tf , t0)x0 −
∫ tf

t0

φ̂A(tf , ρ(s))B(s)BT (s)φ̂T
A(tf , ρ(s))Ĝ−1

C (t0, tf )(x0 − φ̂A(t0, tf )xf )∇s,

= φ̂A(tf , t0)x0

−φ̂A(tf , t0)
∫ tf

t0

φ̂A(t0, ρ(s))B(s)BT (s)φ̂A(t0, ρ(s))∇s Ĝ−1
C (t0, tf )(x0 − φ̂A(t0, tf )xf )

= φ̂A(tf , t0)x0 − (φ̂A(tf , t0)x0 − xf )
= xf ,

so that the state equation is controllable on [t0, tf ].
Conversely, suppose that the state equation is controllable, but for the sake of a contradiction, assume

the matrix ĜC(t0, tf ) is not invertible. If ĜC(t0, tf ) is not invertible, then there exists a vector xa 6= 0 such
that

0 = xT
a ĜC(t0, tf )xa =

∫ tf

t0

xT
a φ̂A(t0, ρ(s))B(s)BT (s)φ̂T

A(t0, ρ(s))xa∇s. (7.2)

But, the function in this expression is the nonnegative continuous function ||xT
a φ̂A(t0, ρ(s))B(s)||2, and so it

follows that

xT
a φ̂A(t0, ρ(s))B(s) = 0, t ∈ (t0, tf ]. (7.3)
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However, the state equation is controllable on [t0, tf ]T, and so choosing x0 = xa + φ̂A(t0, tf )xf , there exists
an input signal ua(t) such that

xf = φ̂A(tf , t0)x0 +
∫ tf

t0

φ̂A(tf , ρ(s))B(s)ua(s)∇s,

which is equivalent to the equation

xa = −
∫ tf

t0

φ̂A(t0, ρ(s))B(s)ua(s)∇s.

Multiplying through by xT
a and using (7.2) and (7.3) yields xT

a xa = 0, a contradiction. Thus, the matrix
ĜC(t0, tf ) is invertible. ¤

Before producing our feedback theorem, we need a couple of lemmas.

Lemma 7.1. The ν-Hilger circle Hν is closed under the operation ⊕ν .

Proof. Let α ∈ C be such that |α| > 1. Then a = 1−α
ν ∈ Hν since

∣∣ 1−α
ν − 1

ν

∣∣ =
∣∣−α

ν

∣∣ > 1
ν . Similarly, let

β ∈ C be such that |β| > 1, so that b = 1−β
ν ∈ Hν . We set

c := a⊕ν b = a + b− νab.

Now, c ∈ Hν if there exists a γ ∈ C such that |γ| > 1 with c = 1−γ
ν . We claim that the choice γ = αβ will

suffice, from which the claim follows immediately. Indeed, with this choice of γ, we have that

1− γ

ν
=

1− α

ν
+

1− β

ν
− ν

1− α

ν

1− β

ν
,

and since |γ| = |α| · |β| > 1, the claim follows. ¤

Lemma 7.2 (Stability Under Change of State Variables). The ν-regressive nabla linear state equation

x∇(t) = A(t)x(t) + B(t)u(t), x(t0) = x0,

y(t) = C(t)x(t),

is ν-uniformly exponentially stable with rate (λ + α)/(1 − ν∗α), where λ, α > 0 and α ∈ R+
ν , if the linear

state equation
z∇(t) = [(1− ν(t)α)A(t) + αI]z(t), z(t0) = x0

is ν-uniformly exponentially stable with rate λ.

Proof. By direct calculation, x(t) satisfies

x∇(t) = A(t)x(t), x(t0) = x0,

if and only if z(t) = êα(t, t0)x(t) satisfies

z∇(t) = [(1− ν(t)α)A(t) + αI]z(t), z(t0) = x0. (7.4)

Now assume there exists a γ > 0 such that for any x0 and t0, the solution of (7.4) satisfies

||z(t)|| ≤ γê−λ(t, t0)||x0||, t ≥ t0.

Then substituting for z(t) yields

||êα(t, t0)x(t)|| = êα(t, t0)||x(t)|| ≤ γê−λ(t, t0)||x0||,
so that

||x(t)|| ≤ γê−λªνα(t, t0)||x0|| ≤ γê−(λ+α)/(1−ν∗α)(t, t0)||x0||,
where we note that −(λ + α)/(1− ν∗α) ∈ R+

ν . ¤

We defined the controllability Gramian ĜC(t, C(t)) earlier as

ĜC(t0, tf ) =
∫ tf

t0

φ̂A(t0, ρ(s))B(s)BT (s)φ̂T
A(t0, ρ(s))∇s. (7.5)
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To obtain the feedback result, we need to use the following shifted version of this matrix. For α > 0 ∈ R+
ν ,

define the matrix

ĜCα(t0, tf ) =
∫ tf

t0

(êα(t0, s))4φ̂A(t0, ρ(s))B(s)BT (s)φ̂T
A(t0, ρ(s))∇s. (7.6)

Theorem 7.2 (Gramian Exponential Stability Criterion). Let T be a time scale with bounded graininess.
For the ν-regressive nabla linear state equation

x∇(t) = A(t)x(t) + B(t)u(t), x(t0) = x0,

y(t) = C(t)x(t),

suppose there exist positive constants ε1, ε2 and a strictly increasing function C : T → T such that 0 <
C(t)− t ≤ M < ∞ with

ε1I ≤ ĜC(t, C(t)) ≤ ε2I, (7.7)

for all t. Then given a positively regressive constant α > 0, the state feedback gain

K(t) = −BT (t)(I − ν(t)AT (t))−1Ĝ−1
Cα

(t, C(t)), (7.8)

is such that the resulting closed-loop state equation is uniformly exponentially stable with rate α.

Proof. We first note that for N = inf
t∈T

log(1− ν(t)α)
ν(t)

, we have −∞ < N < 0 since T has bounded graininess.

Thus,

êα(t, C(t)) = exp

(∫ C(t)

t

log(1− ν(τ)α)
ν(τ)

∇τ

)

≥ exp

(∫ C(t)

t

N∇τ

)

= eN(C(t)−t)

≥ eMN , (since N < 0).

Comparing the quadratic forms xT ĜCα(t, C(t))x and xT ĜC(t, C(t))x using their respective definitions (7.5)
and (7.6) gives

e4MN ĜC(t, C(t)) ≤ ĜCα(t, C(t)) ≤ ĜC(t, C(t)),
for all t. Thus, (7.7) gives

ε1e
4MNI ≤ Ĝα(t, C(t)) ≤ ε2I (7.9)

for all t, and so the existence of Ĝ−1
Cα

(t, C(t)) is immediate. Now, we show that the linear state equation

z∇(t) = [(1− ν(t)α)Â(t) + αI]z(t), (7.10)

where Â(t)−B(t)BT (t)(I − ν(t)AT (t))−1Ĝ−1
Cα

(t, C(t)), is ν-uniformly exponentially by Theorem 6.3 with the
choice

Q(t) = Ĝ−1
Cα

(t, C(t)). (7.11)

Lemma 7.2 then yields the result. To apply the theorem, we first note that Q(t) is symmetric and continuously
nabla differentiable. Thus, (7.9) gives

1
ε2

I ≤ Q(t) ≤ e−4MN

ε1
I, (7.12)

for all t. Hence, it only remains to show that there exists γ > 0 such that

Q(t)− (I − ν(t)ÂT (t))Q(ρ(t))(I − ν(t)Â(t))
ν(t)

≤ −γI.
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We begin with the second term, writing
[
I − ν(t)[(1− ν(t)α)Â(t) + αI]T

]
Q(ρ(t))

[
I − ν(t)[(1− ν(t)α)Â(t) + αI]

]

= (1− ν(t)α)2
[
[I − ν(t)AT (t)] + Ĝ−1

Cα
(t, C(t))[I − ν(t)A(t)]−1ν(t)B(t)BT (t)

]

·Ĝ−1
Cα

(ρ(t), C(ρ(t)))
[
[I − ν(t)A(t)] + ν(t)B(t)BT (t)[I − ν(t)AT (t)]−1Ĝ−1

Cα
(t, C(t))

]
.

We pause to establish an important identity. Notice that

[I − ν(t)A(t)]ĜCα(t, C(t))[I − ν(t)AT (t)]

=
1

(1− ν(t)α)4
ĜCα(ρ(t), C(t))− ν(t)B(t)BT (t). (7.13)

This leads to

I + ν(t)[I − ν(t)A(t)]−1B(t)BT (t)[I − ν(t)AT (t)]−1Ĝ−1
Cα

(t, C(t))
=

1
(1− ν(t)α)4

[I − ν(t)A(t)]−1ĜCα(ρ(t), C(t))[I − ν(t)AT (t)]−1

·Ĝ−1
Cα

(t, C(t)), (7.14)

which in turn yields

I + ν(t)Ĝ−1
Cα

(t, C(t))[I − ν(t)A(t)]−1B(t)BT (t)[I − ν(t)AT (t)]−1

=
1

(1− ν(t)α)4
Ĝ−1

Cα
(t, C(t))[I − ν(t)A(t)]−1ĜCα(ρ(t), C(t))

·[I − ν(t)AT (t)]−1. (7.15)

The second term can now be rewritten as

(1− ν(t)α)2
[
[I − ν(t)AT (t)] + Ĝ−1

Cα
(t, C(t))[I − ν(t)A(t)]−1ν(t)B(t)BT (t)

]

· Ĝ−1
Cα

(ρ(t), C(ρ(t)))
[
[I − ν(t)A(t)] + ν(t)B(t)BT (t)[I − ν(t)AT (t)]−1Ĝ−1

Cα
(t, C(t))

]

= (1− ν(t)α)2
[
I + Ĝ−1

Cα
(t, C(t))[I − ν(t)A(t)]−1ν(t)B(t)BT (t)[I − ν(t)AT (t)]−1

]

· [I − ν(t)AT (t)]Ĝ−1
Cα

(ρ(t), C(ρ(t)))[I − ν(t)A(t)]

·
[
I + [I − ν(t)A(t)]−1ν(t)B(t)BT (t)[I − ν(t)AT (t)]−1Ĝ−1

Cα
(t, C(t))

]
.

Using (7.14) and (7.15), we can now write
[
I − ν(t)[(1− ν(t)α)Â(t) + αI]T

]
Q(ρ(t))

[
I − ν(t)[(1− ν(t)α)Â(t) + αI]

]

= (1− ν(t)α)−6Ĝ−1
Cα

(t, C(t))[I − ν(t)A(t)]−1ĜCα(ρ(t), C(t))Ĝ−1
Cα

(ρ(t), C(ρ(t)))

· ĜCα(ρ(t), C(t))[I − ν(t)AT (t)]−1Ĝ−1
Cα

(t, C(t)). (7.16)

On the other hand, from the definition of ĜCα
(t, C(t)), we have

ĜCα
(ρ(t), C(ρ(t))) ≤ ĜCα

(ρ(t), C(t)),

which in turn implies
Ĝ−1

Cα
(ρ(t), C(ρ(t))) ≥ Ĝ−1

Cα
(ρ(t), C(t)).

Combining this with (7.16) gives
[
I − ν(t)[(1− ν(t)α)ÂT (t) + αI]

]
Q(ρ(t))

[
I − ν(t)[(1− ν(t)α)Â(t) + αI]

]

≥ (1− ν(t)α)−6Ĝ−1
Cα

(t, C(t))
[
[I − ν(t)A]−1ĜCα(ρ(t), C(t))[I − ν(t)AT (t)]

]

· ĜCα
(t, C(t)).
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Applying (7.13) again yields
[
I − ν(t)[(1− ν(t)α)ÂT (t) + αI]

]
Q(ρ(t))

[
I − ν(t)[(1− ν(t)α)Â(t) + αI]

]

≥ (1− ν(t)α)−6Ĝ−1
Cα

(t, C(t))
·

[
(1− ν(t)α)4ĜCα(t, C(t)) + ν(t)(1− ν(t)a)4[I − ν(t)A(t)]−1B(t)BT (t)[I − ν(t)AT (t)]−1

]

· Ĝ−1
Cα

(t, C(t))
≥ (1− ν(t)α)2Ĝ−1

Cα
(t, C(t)).

Thus,

Q(t)−
[
I − ν(t)[(1− ν(t)α)ÂT (t) + αI]

]
Q(ρ(t))

[
I − ν(t)[(1− ν(t)α)Â(t) + αI]

]

ν(t)

≤ −1− (1− ν(t)α)2

ν(t)(1− ν(t)α)2
Ĝ−1

Cα
(t, C(t))

≤ − 1− (1− ν(t)α)2

ν(t)(1− ν(t)α)2ε2
I.

Now, the quantity (1 − (1 − ν(t)α)2)/(ν(t)(1 − ν(t)α)2ε2) is certainly not constant, but it can be bounded
by a quantity that is (here ν∗ = νmin):

1− (1− ν(t)α)2

ν(t)(1− ν(t)α)2ε2
=

2α− ν(t)α2

(1− ν(t)α)2ε2
≥ 2α− ν∗α2

(1− ν∗α)2ε2
.

Thus, if we set γ = 2α−ν∗α2

(1−ν∗α)2ε2
, then

Q(t)−
[
I − ν(t)[(1− ν(t)α)ÂT (t) + αI]

]
Q(ρ(t))

[
I − ν(t)[(1− ν(t)α)Â(t) + αI]

]

ν(t)
≤ −γI.

¤

At this point, it is worth discussing possible choices for the function C(t) which we term the compactifi-
cation operator. If T is purely discrete (i.e. has no points with ν(t) = 0), then one possible choice for C(t)
is C(t) = σk(t) for some k ∈ N. For T = R, it is well known that the choice C(t) = t + δ, for some δ > 0 will
suffice. If T = Pa,b (a disjoint union of closed intervals of length a and gaps between intervals of length b),
then the choice C(t) = t+ a+ b is a possibility. These examples show that the choice of the compactification
operator can vary widely with the time scale involved, and so this is why we cast the theorem in terms of a
general operator.
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