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Abstract

Various dynamic derivative formulae have been proposed in the development of a time scales calculus,
with the goal of unifying continuous and discrete analysis. Recent discussions of combined dynamic deriv-
atives, in particular the ♦α derivative defined as a linear combination of the � and the ∇ derivatives, have
promised improved approximation formulae for computational applications. This paper presents an equiva-
lent definition of the ♦α functions without reference to the existing � and ∇ derivatives, examines the status
of the ♦α as a dynamic derivative and its properties relative to the � and ∇ derivatives, and compares data
obtained using the various dynamic derivatives as approximation formulae in computational experiments.
A ♦α integral case is investigated.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Dynamic derivatives; Combined formula; Dynamic equations; Approximations; Nonuniform time scales

1. Introduction

Much of the development of time scales theory has focused on the unification of continuous
and discrete analytical methods. Recent discussions have suggested that the theory and meth-
ods of time scales might also provide a means of integrating difference and differential methods
for modeling nonlinear systems of dynamic equations on domains that are arbitrary nonempty
closed subsets of the reals. To this end, the usefulness of various dynamic derivative formulae,
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including the standard � and ∇ derivatives, in approximating functions and solutions of non-
linear differential equations has been explored [3,4,6,10]. It has been demonstrated in several
recent papers [8–10] that a proposed dynamic derivative formula, called the ♦α derivative and
defined as a linear combination, or the Broyden’s formula [5,13], of the � and the ∇ dynamic
derivatives, provides a more accurate approximation to the conventional derivative. The question
remains, however, as to whether the ♦α derivative is a well-defined dynamic derivative upon
which a calculus on time scales can be built.

This paper redefines the ♦α derivative independently of the standard � and ∇ dynamic deriv-
atives, and further examines its properties and relationship with the � and the ∇ formulae. In
addition, we examine the feasibility of formulating a corresponding ♦α integral. Finally, we im-
plement several computational experiments and compare the performance of various dynamic
derivatives as approximation formulae.

Our discussions will be organized as follows: Section 2 contains basic definitions and the-
orems of time scales theory and of the � and ∇ dynamic derivatives. In Section 3, we define
the ♦α derivative without reference to the � and ∇ derivatives, and show that this new function
is well-defined and equivalent to a linear combination of the � and ∇ derivatives at points where
those derivatives exist. We present several theorems concerning the properties of the ♦α deriv-
ative. In Section 4, we consider two counterexamples that demonstrate that a ♦α antiderivative
does not exist for some continuous functions on a time scale in the case of a fixed α value strictly
between 0 and 1.

Finally, in Section 5, we discuss computational experiments where nonuniform time scales
resulting from adaptive computations of the numerical solution of a solitary wave equation are
employed [11,12]. Numerical errors will be computed and compared between different first order
dynamic derivative approximates over an interval which includes a singularity in the conventional
derivative. The simulation results confirm the computational superiority of the diamond-α as an
approximation formula. The combined dynamic derivatives can be used in various nonlinear
dynamic equations generated via adaptive or hybrid approximations [6,12].

2. The delta and nabla derivatives

An one-dimensional time scale T is an arbitrary nonempty closed subset of R and has the
inherited topology. Let a = inf T and b = sup T. For t ∈ T such that a < t < b, we define the
forward-jump operator, σ , and backward-jump operator, ρ, as

σ(t) = inf{s ∈ T: s > t}, ρ(t) = sup{s ∈ T: s < t},
respectively, and

σ(b) = b, ρ(a) = a,

if T is bounded. The corresponding forward-step and backward-step functions μ, η are defined
as

μ(t) = σ(t) − t, η(t) = t − ρ(t),

respectively. For a function f defined on T, to provide a shorthand notation we let

f σ (t) = f
(
σ(t)

)
, f ρ(t) = f

(
ρ(t)

)
.

We say that a point t ∈ T is right-scattered if σ(t) > t and left-scattered if ρ(t) < t . A point t ∈ T

that is both right-scattered and left-scattered is called scattered. Also, we say that a point t ∈ T is
right-dense if σ(t) = t , left-dense if ρ(t) = t , and dense if it is both right-dense and left-dense.
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We define T
κ = T \ {b} if T is bounded above and b is left-scattered; otherwise T

κ = T.
Similarly, we define Tκ = T \ {a} if T is bounded below and a is right-scattered; otherwise
Tκ = T. We denote T

κ ∩Tκ by T
κ
κ . We say a time scale T is uniform if for all t ∈ T

κ
κ , μ(t) = η(t).

A uniform time scale is an interval if μ(t) = 0, and is a uniform difference grid if μ(t) > 0.

We say a function f defined on T is right continuous at t ∈ T if for all ε > 0 there is some
δ > 0 such that for all s ∈ [t, t + δ), |f (t)−f (s)| < ε. Similarly, we say that f is left continuous
at t ∈ T if for all ε > 0 there is some δ > 0 such that for all s ∈ (t − δ, t], |f (t) − f (s)| < ε. The
function f (t) is said to be continuous if it is both right and left continuous.

For the sake of readability of subsequent formulas, we introduce the following notation. Let
t, s ∈ T and define

μts = σ(t) − s, ηts = ρ(t) − s.

Let f : T → R be a function on a time scale. Then for t ∈ T
κ we define f �(t) to be the value,

if one exists, such that for all ε > 0 there is a neighborhood U of t (i.e., U = (t − δ, t + δ) ∩ T

for some δ > 0) such that for all s ∈ U∣∣[f σ (t) − f (s)
] − f �(t)

(
σ(t) − s

)∣∣ < ε
∣∣σ(t) − s

∣∣.
We say that f is delta differentiable on T

κ provided f �(t) exists for all t ∈ T
κ . Similarly,

for t ∈ Tκ we define f ∇(t) to be the number, if one exists, such that for all ε > 0 there is a
neighborhood V of t such that for all s ∈ V∣∣[f ρ(t) − f (s)

] − f ∇(t)
(
ρ(t) − s

)∣∣ < ε
∣∣ρ(t) − s

∣∣.
We say that f is nabla differentiable on Tκ provided f ∇(t) exists for all t ∈ Tκ .

In subsequence proofs, we will wish to make use of the following theorem due to Hilger [7],
and the analogous theorem for the nabla case which can be found in [2,3]:

Theorem 2.1. Assume f : T → R is a function and let t ∈ T
κ . Then we have the following:

(i) If f is delta differentiable at t , then f is continuous at t .
(ii) If f is left continuous at t and t is right-scattered, then f is delta differentiable at t with

f �(t) = f σ (t) − f (t)

σ (t) − t
.

(iii) If t is right-dense, then f is delta differentiable at t iff the limit

lim
s→t

f (t) − f (s)

t − s

exists as a finite number. In this case

f �(t) = lim
s→t

f (t) − f (s)

t − s
.

Theorem 2.2. Assume f : T → R is a function and let t ∈ Tκ . Then we have the following:

(i) If f is nabla differentiable at t , then f is continuous at t .
(ii) If f is right continuous at t and t is left-scattered, then f is nabla differentiable at t with

f ∇(t) = f (t) − f ρ(t)

t − ρ(t)
.
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(iii) If t is left-dense, then f is nabla differentiable at t iff the limit

lim
s→t

f (t) − f (s)

t − s

exists as a finite number. In this case

f ∇(t) = lim
s→t

f (t) − f (s)

t − s
.

With the above theorems in hand we can establish the following corollary.

Corollary 2.3. Assume f : T → R is a function and let t ∈ T
κ
κ . The existence of the delta deriva-

tive of f at t does not imply the existence of the nabla derivative at t , and vice versa.

Proof. Consider the function

f (t) =
{

t sin(1/t), t �= 0,

0, t = 0,

on a time scale T = [−2,−1] ∪ [0,1]. The function f is continuous at 0, and the point 0 ∈ T is
right-dense, left-scattered. By 2.2(ii), f is nabla differentiable at 0. But a finite limit

lim
s→t

f (t) − f (s)

t − s

does not exist at 0. Thus by 2.1(iii), f is not delta differentiable at 0. To show the existence of the
delta derivative does not imply the existence nabla derivative, we may consider the same function
f at point 0 on a time scale T = [−1,0] ∪ [1,2]. �
3. The diamond-α dynamic derivative

Definition 3.1. Let T be a time scale. We define f ♦α (t) to be the value, if one exists, such that
for all ε > 0 there is a neighborhood U of t (i.e., U = (t − δ, t + δ) ∩ T for some δ > 0) such
that for all s ∈ U∣∣α[

f σ (t) − f (s)
]
ηts + (1 − α)

[
f ρ(t) − f (s)

]
μts − f ♦α (t)μtsηts

∣∣ < ε|μtsηts |.
We say that f is diamond-α differentiable on T

κ
κ provided f ♦α (t) exists for all t ∈ T

κ .

Remark. It is clear that f ♦α (t) reduces to f �(t) for α = 1 and f ∇(t) for α = 0. The idea of such
a formula can be traced back to Broyden’s method in which combinations of different formulae
are utilized. The new formula takes advantage of each individual method and provides a far more
effective formula [5].

We show that the function described above is well-defined. Let each of Φ1(t) and Φ2(t) be
values such that ∀ε > 0 there exist neighborhoods U1 and U2 of t such that ∀s ∈ U1∣∣α[

f σ (t) − f (s)
]
ηts + (1 − α)

[
f ρ(t) − f (s)

]
μts − Φ1(t)μtsηts

∣∣ < ε|μtsηts |
and ∀s ∈ U2∣∣α[

f σ (t) − f (s)
]
ηts + (1 − α)

[
f ρ(t) − f (s)

]
μts − Φ2(t)μtsηts

∣∣ < ε|μtsηts |.
Let ε > 0 be given and set ε∗ = ε/2. Then ∀s ∈ U = U1 ∩ U2
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∣∣Φ1(t) − Φ2(t)
∣∣|μtsηts |

= ∣∣Φ1(t)μtsηts − Φ2(t)μtsηts

∣∣
= ∣∣−α

[
f σ (t) − f (s)

]
ηts − (1 − α)

[
f ρ(t) − f (s)

]
μts + Φ1(t)μtsηts

+ α
[
f σ (t) − f (s)

]
ηts + (1 − α)

[
f ρ(t) − f (s)

]
μts − Φ2(t)μtsηts

∣∣
<

∣∣α[
f σ (t) − f (s)

]
ηts + (1 − α)

[
f ρ(t) − f (s)

]
μts − Φ1(t)μtsηts

∣∣
+ ∣∣α[

f σ (t) − f (s)
]
ηts + (1 − α)

[
f ρ(t) − f (s)

]
μts − Φ2(t)μtsηts

∣∣
< ε∗|μtsηts | + ε∗|μtsηts |
= ε|μtsηts |.

Thus |Φ1(t) − Φ2(t)| < ε and letting ε go to zero, we see Φ1(t) = Φ2(t).

Theorem 3.2. Let 0 � α � 1. If f is both � and ∇ differentiable at t ∈ T, then f is ♦α differen-
tiable at t and f ♦α (t) = αf �(t) + (1 − α)f ∇(t).

Proof. Assume f �(t) and f ∇(t) exist. Then ∀ε > 0, ∃ neighborhoods U1 and U2 such that
∀s ∈ U1∣∣[f σ (t) − f (s)

] − f �(t)μts

∣∣ < ε|μts |
and ∀s ∈ U2∣∣[f ρ(t) − f (s)

] − f ∇(t)ηts

∣∣ < ε|ηts |.
Then ∀s ∈ U1∣∣α[

f σ (t) − f (s)
]
ηts − αf �(t)μtsηts

∣∣ < αε|μtsηts |
and ∀s ∈ U2∣∣(1 − α)

[
f ρ(t) − f (s)

]
μts − (1 − α)f ∇(t)μtsηts

∣∣ < (1 − α)ε|μtsηts |.
Thus ∀s ∈ U = U1 ∩ U2 we have∣∣α[

f σ (t) − f (s)
]
ηts + (1 − α)

[
f ρ(t) − f (s)

]
μts − [

αf �(t) + (1 − α)f ∇(t)
]
μtsηts

∣∣
�

∣∣α[
f σ (t) − f (s)

]
ηts − αf �(t)μtsηts

∣∣
+ ∣∣(1 − α)

[
f ρ(t) − f (s)

]
μts − (1 − α)f ∇(t)μtsηts

∣∣
< αε|μtsηts | + (1 − α)ε|μtsηts | = ε|μtsηts |.

Thus f ♦α (t) exists and f ♦α (t) = αf �(t) + (1 − α)f ∇(t). �
Corollary 3.3. Let t ∈ T be dense. Then if f ′(t) exists we have

f ♦α (t) = f �(t) = f ∇(t) = f ′(t).

Proof. Let the point t be dense and f ′(t) = limh→0
f (t+h)−f (t)

h
exist as a finite value. For

a sufficiently small neighborhood U of t , ∀s, t ∈ U we may substitute h = s − t to see
f ′(t) = limh→0

f (t+h)−f (t)
h

= lims→t
f (t)−f (s)

t−s
. Then by Theorem 2.1(iii), f �(t) = f ′(t), and

by Theorem 2.2(iii), f ∇(t) = f ′(t). Thus by Theorem 3.2,

f ♦α (t) = αf �(t) + (1 − α)f ∇(t) = αf ′(t) + (1 − α)f ′(t) = f ′(t). �
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Lemma 3.4. Let t ∈ T be scattered. Then f is continuous at t .

Proof. Assume t ∈ T is scattered. Then μ(t) > 0 and η(t) > 0. Let 0 < δ < min(μ(t), η(t)).
Then ∀ε > 0 there is a neighborhood U = (t − δ, t + δ)∩ T of t such that ∀s ∈ U , s = t and thus
|f (t) − f (s)| = 0 < ε. �
Corollary 3.5. Let t ∈ T be scattered. Then

(i) f �(t) exists and

f �(t) = f σ (t) − f (t)

σ (t) − t
;

(ii) f ∇(t) exists and

f ∇(t) = f ρ(t) − f (t)

ρ(t) − t
;

(iii) f ♦α (t) exists and

f ♦α (t) = α
f σ (t) − f (t)

σ (t) − t
+ (1 − α)

f ρ(t) − f (t)

ρ(t) − t
.

Proof. By Lemma 3.4, f is continuous at t . Then (ii) follows from Theorem 2.1(ii), and (iii)
follows from Theorem 2.2(ii). Then by Theorem 3.2,

f ♦α (t) = αf �(t) + (1 − α)f ∇(t) = α
f σ (t) − f (t)

σ (t) − t
+ (1 − α)

f ρ(t) − f (t)

ρ(t) − t
. �

Corollary 3.6. Let t ∈ T ⊂ R be left-scattered, right-dense, and assume

f ′(t+) = lim
h→0+

f (t + h) − f (t)

h

exists. Then

(i) f �(t) = f ′(t+);
(ii) f ∇(t) = f ρ(t)−f (t)

ρ(t)−t
;

(iii) f ♦α (t) = αf ′(t+) + (1 − α)
f ρ(t)−f (t)

ρ(t)−t
.

Proof. For all neighborhoods U = (t − δ, t + δ) of t such that δ < t − ρ(t), we have ∀s, t ∈ U ,
s − t > 0. Thus we can substitute h = s − t in the limit from the right to see

lim
h→0+

f (t + h) − f (t)

h
= lim

s→t

f (t) − f (s)

t − s
.

Then by Theorem 2.1(iii),

f �(t) = lim
s→t

f (t) − f (s)

t − s
= f ′(t+).

Since f ′(t+) exists, (ii) follows from Theorem 2.2(ii). Then by Theorem 3.2,

f ♦α (t) = αf �(t) + (1 − α)f ∇(t) = αf ′(t+) + (1 − α)
f ρ(t) − f (t)

. �

ρ(t) − t
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The proof of the following corollary is similar.

Corollary 3.7. Let t ∈ T ⊂ R be left-dense, right-scattered, and assume

f ′(t−) = lim
h→0−

f (t + h) − f (t)

h

exists. Then

(i) f �(t) = f σ (t)−f (t)
σ (t)−t

;
(ii) f ∇(t) = f ′(t−);

(iii) f ♦α (t) = α
f σ (t)−f (t)

σ (t)−t
+ (1 − α)f ′(t−).

Theorem 3.8. Let T be a time scale and 0 � α � 1. If f is ♦α differentiable at t , then f is
continuous at t .

Proof. Assume f is ♦α differentiable at t ∈ T. If t is a dense or scattered point, the result
follows from Corollaries 3.3 and 3.5, respectively. It remains to consider the two cases where t

is right-dense and left-scattered, or t is right-scattered and left-dense.
Assume t right-dense and left-scattered. Thus σ(t) = t and ρ(t) < t .
Let ε ∈ (0,1) and

ε∗ = εα|ρ(t) − t |
(1 − α)|[f ρ(t) − f (t)] − f ♦α (t)[α(ρ(t) − t) − 1]| + |ρ(t) − t | + 1

.

Thus 0 < ε∗ < 1. Then there is a neighborhood U1 of t such that for all s ∈ U1∣∣α[
f σ (t) − f (s)

]
ηts + (1 − α)

[
f ρ(t) − f (s)

]
μts − f ♦α (t)μtsηts

∣∣
= ∣∣α[

f (t) − f (s)
][(

ρ(t) − t
) + (t − s)

]
+ (1 − α)

[(
f ρ(t) − f (t)

) + (
f (t) − f (s)

)]
(t − s)

− f ♦α (t)(t − s)
[(

ρ(t) − t
) + (t − s)

]∣∣
= ∣∣α[

f (t) − f (s)
](

ρ(t) − t
) + (1 − α)

[
f ρ(t) − f (t)

]
(t − s)

+ [
f (t) − f (s)

]
(t − s) − f ♦α (t)(t − s)

[(
ρ(t) − t

) + (t − s)
]∣∣

= ∣∣[f (t) − f (s)
][

α
(
ρ(t) − t

) + (t − s)
]

+ [
(1 − α)

[
f ρ(t) − f (t)

] − f ♦α (t)
[
α
(
ρ(t) − t

) + (t − s)
]]

(t − s)
∣∣

< ε∗|μtsηts |
= ε∗

∣∣(t − s)
∣∣∣∣[(ρ(t) − t

) + (t − s)
]∣∣.

Thus
∣∣∣∣[f (t) − f (s)

][
α
(
ρ(t) − t

) + (t − s)
]∣∣

− ∣∣[(1 − α)
[
f ρ(t) − f (t)

] − f ♦α (t)
[
α
(
ρ(t) − t

) + (t − s)
]]

(t − s)
∣∣∣∣

< ε∗
∣∣(t − s)

∣∣∣∣[(ρ(t) − t
) + (t − s)

]∣∣.
Since t left-scattered, right-dense we have for all s ∈ U1, ρ(t) < t � s. Thus for all s ∈ U =
U1 ∩ (t − ε∗, t + ε∗)
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∣∣[f (t) − f (s)
]
α
(
ρ(t) − t

)∣∣
<

∣∣[f (t) − f (s)
][

α
(
ρ(t) − t

) + (t − s)
]∣∣

<
∣∣(1 − α)

[
f ρ(t) − f (t)

] − f ♦α (t)
[
α
(
ρ(t) − t

) + (t − s)
]∣∣|t − s|

+ ε∗|t − s|∣∣(ρ(t) − t
) + (t − s)

∣∣
< ε∗

∣∣(1 − α)
[
f ρ(t) − f (t)

] − f ♦α (t)
[
α
(
ρ(t) − t

) − 1
]∣∣ + ε∗

[∣∣ρ(t) − t
∣∣ + 1

]
.

Thus
∣∣f (t) − f (s)

∣∣ <
ε∗[|(1 − α)[f ρ(t) − f (t)] − f ♦α (t)[α(ρ(t) − t) − 1]| + |ρ(t) − t | + 1]

α|ρ(t) − t |
= ε. �

Theorem 3.9. Let T be a time scale and 0 < α < 1. If f is ♦α differentiable at t , then f is both
� and ∇ differentiable at t .

Proof. Let T be a time scale and 0 < α < 1. Let ε > 0 be given, and set ε∗ = ε 1−α
1+α

> 0. Assume
f is ♦α differentiable at t ∈ T. Thus by Theorem 3.8, f is continuous at t . If t is a dense or scat-
tered point, the result follows from Corollaries 3.3 and 3.5, respectively. It remains to consider
the two cases where t is right-dense and left-scattered, or t is right-scattered and left-dense.

Assume t right-scattered and left-dense. Thus σ(t) > t and ρ(t) = t . Also, since f is continu-
ous at t , by Theorem 2.1(ii), f is � differentiable at t . Then for all ε∗ > 0 there is a neighborhood
U1 of t such that for all s ∈ U1∣∣α[

f σ (t) − f (s)
]
ηts + (1 − α)

[
f ρ(t) − f (s)

]
μts − f ♦α (t)μtsηts

∣∣ < ε∗|μtsηts |
and neighborhood U2 of t such that for all s ∈ U2∣∣[f σ (t) − f (s)

] − f �(t)μts

∣∣ < ε∗|μts |.
Choose γ such that f ♦α (t) = αf �(t) + (1 − α)γ . Then there exists neighborhood U = U1 ∩ U2
of t such that for all s ∈ U∣∣α[

f σ (t) − f (s)
]
ηts + (1 − α)

[
f ρ(t) − f (s)

]
μts − [

αf �(t) + (1 − α)γ
]
μtsηts

∣∣
= ∣∣α[

f σ (t) − f (s) − f �(t)μts

]
ηts + (1 − α)

[
f ρ(t) − f (s) − γ ηts

]
μts

∣∣
< ε∗|μtsηts |.

Thus ∣∣(1 − α)
[
f ρ(t) − f (s) − γ ηts

]
μts

∣∣ � ε|μtsηts | +
∣∣α[

f σ (t) − f (s) − f �(t)μts

]
ηts

∣∣
< ε∗|μtsηts | + αε∗|μtsηts | = (1 + α)ε∗|μtsηts |.

Then ∣∣[f ρ(t) − f (s)
] − γ ηts

∣∣ < ε∗
1 + α

1 − α
|ηts | = ε|ηts |.

Thus f ∇(t) = γ exists.
The case t right-dense, left-scattered is similar. �

Remark. Note that the strict inequalities in 0 < α < 1 are necessary for the results above. In the
case α = 1, the ♦α derivative reduces to the � derivative, which by Corollary 2.3, does not imply
the existence of the ∇ . Similarly for α = 0.
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4. A diamond-α integral

We present two problematic cases that arise when we attempt to determine a corresponding
♦α integral.

First, let α = 1
2 and T be the set {0,1,2,3}. Then the ♦α derivative for a function on T is

defined on the set T
κ
κ which is {1,2}. Define the function f (t) ≡ 0. Next define functions F and

G as follows:

F(0) = 0, G(0) = 1;
F(1) = 5, G(1) = −3;
F(2) = 0, G(2) = 1;
F(3) = 5, G(3) = −3.

Then

F♦α (1) = 1

2

F(2) − F(1)

2 − 1
+ 1

2

F(1) − F(0)

1 − 0
= 1

2
(0 − 5) + 1

2
(5 − 0) = 0 = f (1)

and

F♦α (2) = 1

2

F(3) − F(2)

3 − 2
+ 1

2

F(2) − F(1)

2 − 1
= 1

2
(5 − 0) + 1

2
(0 − 5) = 0 = f (2).

Also

G♦α (1) = 1

2

G(2) − G(1)

2 − 1
+ 1

2

G(1) − G(0)

1 − 0
= 1

2

(
1 − (−3)

) + 1

2
(−3 − 1) = 0 = f (1)

and

G♦α (2) = 1

2

G(3) − G(2)

3 − 2
+ 1

2

G(2) − G(1)

2 − 1
= 1

2
(−3 − 1) + 1

2

(
1 − (−3)

) = 0 = f (2).

Thus F♦α (t) = G♦α (t) = f (t) on T
κ
κ . We see that both F and G are ♦α antiderivatives of f

on T
κ
κ . However,

2∫
1

f (t)♦αt = F(2) − F(1) = −5 �= 4 = G(2) − G(1) =
2∫

1

f (t)♦αt

and we have arrived at a contradiction.
The above counterexample can be generalized for any fixed α strictly between 0 and 1, and

for any purely discrete time scale, such as T = Z.
Next, we present an example where no ♦α antiderivative exists. Again let α = 1/2. Let T be

(−∞,1] ∪ [2,∞). Set

f (t) =
{−1, x � 1,

5, x � 2.

Assume a ♦α antiderivative F of f exists on T
κ
κ . On (−∞,1], F must be of the form −t + C1

where C1 is a constant. On [2,∞), F must be of the form 5t + C2. It follows therefore

F♦α (1) = 1

2
F�(1) + 1

2
F∇(1) = f (1).

Thus
1 [(

5(2) + C2
) − (−1(1) + C1

)] + 1
(−1) = −1. (4.1)
2 2
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Also,

F♦α (2) = 1

2
F�(2) + 1

2
F∇(2) = f (2).

Thus

1

2
(5) + 1

2

[(
5(2) + C2

) − (−1(1) + C1
)] = 5. (4.2)

From (4.1) and (4.2) we obtain a system of equations

C1 − C2 = 12,

C1 − C2 = 6

with no solution. Thus for function f , which is continuous on T, no ♦α antiderivative exists
on T

κ
κ .

5. Numerical examples

We consider adaptive approximations of the kink function [12],

u(x, y) = α arctan exp
{
β −

√
x2 + y2

}
, (5.1)

for initializing a sequence of circular ring solitons from the sine-Gordon equation,

wrr = wxx + wyy − φ(x, y) sinw, r > 0,

in the spacial domain Ω = {(x, y) | −a < x < a, −b < y < b}, where the function φ is often
interpreted as a Josephson current density of the solitary wave [1,12].

For the sake of simplicity in our one-dimensional experiments, we set α = β = π , a = 14 and
y ≡ 0. Replace the notation x by t, from (5.1) we have

u(t) = π arctan exp
{
π − |t |}, −14 � t � 14.

The function value changes rapidly while −7 < t < 7, and u is not smooth throughout the inter-
val [−14,14] due to the fact that

u′(t) =
{

π/[1 + (π + t)2], t < 0,

−π/[1 + (π − t)2], t > 0,

and u′(0) does not exist. The change of the derivative function value is more violent throughout
the domain, and introduces substantial difficulties in approximating u′ over the interval [−14,14]
using one formula. This motivates our numerical investigations targeted at the approximations
of u′.

In Fig. 1, we show the solitary kink function, its sine mode representation s = sin(u/2), the
velocity of the kink, that is, v = u′, and an arc-length adaptive step (equivalent to μ or η) distribu-
tion generated based on the derivative function [11,12]. Note that the sudden decrease of the step
sizes as t approaches 0 is due to the singularity involved. The adaptive mechanism established
offers a nonuniform time scale T superimposed over the interval [−14,14] for a possibly more
accurate approximation to the derivative function u′ from the data u. The number of grids used, n,

is 280, with the minimal step size hmin ≈ 0.03473491 and maximal step size hmax ≈ 0.10497856.

Since the nonuniform grids obtained are symmetric about t = 0, anti-symmetric properties of the
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Fig. 1. The kink function u (top-left); its sine mode representation sin(u/2) (top-right); derivative u′ (bottom-left); and
distribution of the adaptive step sizes based on the derivative function (bottom-right).

� and ∇ dynamic derivatives are expected [6,8,9]. However, the phenomenon will not affect the
overall accuracy of the approximation formulae.

Numerical errors of approximations of u′ on T via different dynamic derivative

ε� = u� − u′,
ε∇ = u∇ − u′,
ε♦α = u♦α − u′

are presented in Fig. 2. A modified finite difference formula,

uD = 2
u�(t) − u∇(t)

μ(t) + η(t)
, (5.2)

is introduced for comparison purposes on the nonuniform discrete time scale T. For it, we denote
uD − u′ = εD, t ∈ T. Further, to see more precisely the superior quality of the ♦1/2 approxima-
tion, we also plot the pointwise relative errors,

E♦1/2 =
{ |ε♦1/2 |i

|u′|i
}n

i=1
, ED =

{ |εD|i
|u′|i

}n

i=1
,

in Fig. 2. Logarithmic y-scale is used to give a better view of the details. All computations are
implemented based on the u on the nonuniform discrete time scale T.

It is observed in Fig. 2 that the ♦α dynamic derivative provides better overall approximation
results than traditional � and ∇ dynamic derivatives with the α values used. When α = 1/2,

the ♦α derivative not only indicates a comparable quality as compared with the modified finite
difference formula which is used in most adaptive algorithms, but also demonstrates a superior
tolerance around the singular point. The latter property implies that the ♦α dynamic derivative
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Fig. 2. Numerical errors of the different approximations of u′ on the discrete time scale T. Top-left: ε� (dotted curve)
and ε∇ (solid curve); top-right: ε♦1/6 (dotted curve) and ε♦5/6 (solid curve); center-left: ε♦1/3 (dotted curve) and ε♦2/3
(solid curve); center-right: ε♦1/2 ; bottom-left: εD; bottom-right: relative errors of the ♦1/2 (solid curve) and modified
central difference formula (5.2) (dotted curve). Logarithmic y-scale is used to show details of the error distributions.

is perhaps a better approximation formula to be used in numerical problems involving possible
singularities. This is important in many adaptive and hybrid computational applications. We refer
the reader to Table 1 for more detailed error data and interesting features displays based on
enlarged ε♦1/2 and εD values.

For each point t , it is possible to calculate a value of α that minimizes |ε♦α |. When t is
scattered, we have

ε♦α = u♦α (t) − u′(t) = u♦α (t) = α
uσ (t) − u(t)

σ (t) − t
+ (1 − α)

uρ(t) − u(t)

ρ(t) − t
− u′(t).

We find that the error is minimized when

α = μ(t)[η(t)u′(t) − u(t) + uρ(t)]
η(t)[uσ − u(t)] − μ(t)[u(t) − uρ(t)] .

Figure 3 presents the best α values for the grid points used in the domain of our kink function
example. All our numerical experiments are carried out using MATLAB and SIMULINK subrou-
tines on dual-processor DELL PRECISION workstations.
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Table 1
A direct comparison of the numerical errors of ε♦1/2 and εD when approximating the velocity of the kink function u.

The values listed are 103 times the true errors
t ε♦1/2 εD t ε♦1/2 εD

−10.850644 0.00259083 0.00259082 0.034601 92.74945926 140.25953222
−8.751093 0.02114102 0.02113858 0.069336 −2.63857717 −5.19001481
−6.652650 0.16921765 0.16814764 0.276496 −0.29481600 −0.28049321
−4.606311 0.42633868 0.20916658 0.482355 −0.34343580 −0.31842075
−3.295351 −1.91605181 −1.66914581 1.466492 −0.37749656 −0.16102783
−2.322998 0.23964928 0.60772959 2.322998 −0.23964928 −0.60772959
−1.466492 0.37749656 0.16102783 3.295351 1.91605182 1.66914581
−0.482355 0.34343580 0.31842075 4.606311 −0.42633868 −0.20916658
−0.276496 0.29481600 0.28049321 6.652650 −0.16921765 −0.16814764
−0.069336 −44.87149578 −44.92800153 8.751093 −0.02114102 −0.02113858

Fig. 3. Alpha values minimizing |ε♦α |. The optimized value of alpha is not only a function of the function considered,
but also a function of the time scale used.
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